University of Delaware
Department of Electrical and Computer Engineering
Computer Architecture and Parallel Systems Laboratory

Design Manual for the Fresh Breeze Simulator

Xiao X. Meng', Tom St. John', Jack B. Dennis?,
Guang R. Gao'

CAPSL Technical Memo 115
April 25, 2012

Copyright (© 2012 CAPSL at the University of Delaware

1 University of Delaware and
2 Massachusetts Institute of Technology

University of Delaware e 140 Evans Hall @ Newark, Delaware 19716 ¢ USA
http://www.capsl.udel.edu e ftp://ftp.capsl.udel.edu e capsladm@capsl.udel.edu

Contents

Introduction
Overall Design of the Fresh Breeze Simulator on Cyclops64

The Work Stealing Based Parallel Task Execution

3.1 Work Stealing Scheme on the Fresh Breeze Chip

3.2 Imternal Design of EU
3.2.1 Pending Task List
3.2.2 Task State Change
3.2.3 The Handling of Task Context Switching
3.2.4 Put it All Together: How EU Works?

3.3 Imternal Design of SU

The First Storage Level: the Private L1 Cache
4.1 Cache Access Operations. i i it

The Second Storage Level: the Main Memory
5.1 Main Memory Access Operations

The Implementation of Chunk Operations
6.1 Storage Access Interface L
6.2 Internal Implementations oo

The Implementation of the Spawn-Join Mechanism

7.1 The Principle of the Spawn-Join Mechanism
7.2 Task Management Interface
7.3 Internal Implementations o

List of Figures

Overall design scheme of Fresh Breeze simulator
Data layout of the private scratchpad of an EU
Task state change diagram L
The EU working diagram
Data layout of the private scratchpad memory of the SU
The data layout of the scratchpad memory of a TSU
The diagram of topstor_read() operation
The diagram of topstor_write() operation
Data layout of scratchpad memory of an MSU
0 Join Ticket and its Relationship with Master Task, Continuation Task and

Worker Tasks e
11 The definition of the join ticket chunk

12 The diagram of a join init operation in the Fresh Breeze simulator
13 The diagram of a join update operation in the Fresh Breeze simulator

= OO0 UL W -

Abstract

This manual is intended for readers who want to understand the internal design and
implementation of the Fresh Breeze simulator on the Cyclops64 architecture and also for
those who want to develop new applications using the simulator.

The Fresh Breeze simulator was developed to verify the effectiveness and generality
of the Fresh Breeze Memory model. The Fresh Breeze memory model was proposed by
Professor Jack B. Dennis from MIT to support extremely fine grain management of storage
resources across the entire memory hierarchy. In the envisioned Fresh Breeze system, the
entire memory hierarchy is managed by the hardware, without assistance from the operating
system. Furthermore, the data management granularity at every memory level is uniformly
set to a data chunk whose size is as small as 128 bytes. Each chunk can contain up to 16
elements, with each element being either a scalar 64-bit data value or a pointer to another
data chunk. Therefore, any complex data structure will be represented by an arbitrary tree
of chunks under the Fresh Breeze memory model. For example, a linear array with 4096
elements can be represented as a three-level chunk tree. The chunks at the first two levels
each contain pointers to chunks at the next lower level. The chunks at the leaf level will
contain the data values. By using the fine-grain storage resource management, the Fresh
Breeze memory model can increase the memory access concurrency for future many-core
Processors.

1 Introduction

The Fresh Breeze[5] simulator was developed to verify the effectiveness and generality of the
Fresh Breeze memory model. The Fresh Breeze memory model[4] was proposed by Professor
Jack B. Dennis from MIT to support extremely fine-grain management of storage resources
across the entire memory hierarchy. In the envisioned Fresh Breeze system[3], the entire mem-
ory hierarchy is managed by the hardware, without assistance from the operating system.
Furthermore, the data management granularity at every memory level is uniformly set to a
data chunk whose size is as small as 128 bytes. Each chunk can contain up to 16 elements, with
each element being either a 64-bit data value or a pointer to another data chunk. Therefore,
any complex data structure will be represented by an arbitrary tree of chunks under the Fresh
Breeze memory model. For example, a linear array with 4096 elements can be represented as a
three-level chunk tree. The chunks at the first two levels each contain pointers to chunks at the
next lower level. The chunks at the leaf level will contain the data values. By using fine-grain
storage resource management, the Fresh Breeze memory model can increase the memory access
concurrency for future many-core processors.

Another important feature of the Fresh Breeze memory model is that it enforces a write-
once property on memory operations. The write-once property requires that, once a chunk
has been sealed in the storage system, the chunk can no longer be modified. In other words,
a chunk can be shared among tasks only after it has been rendered read-only by its producer
task. The write-once property is very useful in the cache system design, since it circumvents
the annoying cache coherency problem seen in many-core systems. Furthermore, the write-once
property naturally leads to a functional view of the memory system.

A computation typically consists of three steps. The first step is get the input data value
from existing data chunks. The second step is to perform the computation. The last step is
to save the computation result into freshly created chunks. The functional memory system
is a prerequisite to achieve composability in parallel programs, which is highly desirable in
large-scale parallel program development.

Besides the unique memory model, the simulator also simulates a many-core processor chip
which is closely designed for the Fresh Breeze memory model. In the following sections, we will
provide a detailed description of the internal design and implementation of the Fresh Breeze
simulator on the Cyclops64 architecture.

2 Overall Design of the Fresh Breeze Simulator on Cyclops64

This section describes the overall design scheme of the Fresh Breeze simulator on the IBM
Cyclops64 architecture[1]. Each Cyclops64 chip has 80 processors, with 2 independent thread
units per processor. Therefore, we have a total of 160 thread units, or computation cores, on a,
single Cyclops64 chip. Each processor has one floating point unit and every five processors share
a 32-byte instruction cache. Each thread unit has its own 64-byte scratchpad memory which is a
high-speed software managed cache. When the chip boots up, the 64-byte scratchpad memory
of each thread unit can be uniformly configured to be divided into two sections. The first
section is private to its own thread unit, called private scratchpad memory. The second section
is shared by all the 160 thread units and is addressed in an interleaving manner, called global
interleaved memory. The Cyclops64 architecture allows thread units to access each other’s
private scratchpad memory directly. However, the access time to local private scratchpad
memory is much lower than the non-local global interleaved memory as the local access does
not need to go across the on-chip inter-connection network. In addition to the on-chip memory,
a Cyclops64 memory hierarchy consists of three levels. The private scratchpad memory is the
first level, which is equivalent to the L1 cache level in the i386 architecture and is private to
each thread unit. The global interleaved memory comprises the second level, which is equivalent
to the on-chip L2 cache level in the i386 architecture and is shared by all thread units. The
external DRAM is the third level.

The most interesting feature of the Cyclops64 memory hierarchy is that it is explicitly ex-
posed to the application or system programmers. There is no cache coherence protocol in the
hardware design, which makes it very simple and efficient. ETI Inc. has produced a lightweight
runtime system on top of the Cyclops64 architecture, called the TNT-C kernel, which exports a
non-preemptive multithreading programming interface. The application programmers can eas-
ily build their own parallel programs using normal C language plus an extended multithreading
API. There are two important features of the TNT-C runtime kernel[2]. The first feature is
that it supports a lightweight non-preemptive thread execution model, which means that once
a thread has been dispatched to a thread unit, it will hold the thread unit until it terminates
without preemption. The other feature is that the Cyclops64 memory hierarchy is explicitly ex-
posed to applications running on top of the TNT-C kernel. The TNT-C kernel does not employ

EX Application
Task Task TSU
Queue : Quit Resume [AD: Associative Directory]
i 1 Runtime Wr
< - Rd Rd w
Waiting [Kernel { r
| | Search | Insert | AD
MSU
steal . .
stea Global Deferred miss evict -
[remote EUI gk List —l
SU wakeup R -
Task Load Table d‘l' v

Steal Table

Figure 1: Overall design scheme of Fresh Breeze simulator

complex virtual memory techniques like a conventional OS and it only provides a simple dy-
namic heap memory allocator for global interleaved memory and external DRAM. In addition,
the TNT-C compiler provides the static memory allocation for private scratchpad memory.

Our simulator is built on top of the TNT-C kernel as an application program. In order
to utilize the features of the Cyclops64 architecture and TNT-C kernel, and also to accelerate
the simulator development, we do not follow the standard discrete event based implementation
approach. Instead, we directly map each functional unit in our envisioned Fresh Breeze system
to one thread unit on the Cyclops64 chip. The simulation code running on each thread unit
is used to simulate the function of its mapped unit in the Fresh Breeze system. In order to
achieve time-accurate simulator, we use action padding mechanisms to uniformly balance the
simulation cycles used by each critical system action based on our estimated real system cycles
that should be used. For example, assume that the ratio between one real system cycle to one
simulation cycle is R. Then, if action A(X) in our target Fresh Breeze system uses T'(X) cycles
to complete while the measured simulation cycles used in our non-padding simulation is S(X),
then the padding cycles for A(X) should be P(X) = T(X)— S(X)* R. We will carefully choose
a proper value of R to guarantee that for any A(X;), its padding cycles P(X;) is no less than 0.
This is obviously required as we can only intentionally increase the simulation time of an event
by letting the thread unit execute a number of idle instructions but we have no way, or at least
no easy way, to reduce the simulation time of an event. To find out the proper value for R,
we first need to calculate the ratio R(X;) between non-padding simulation cycles and the real
system cycles for each of our interesting critical system actions (X;). Then we set R to be the
maximum (R = MAX[R(X;)]).

Figure 1 gives a general picture of the overall design scheme of our simulator on the Cy-
clops64 architecture. There are four different types of functional units in the simulation system.

Execution Unit (EU): Each EU is simulated by a separate thread unit on the Cyclops64
chip. It represents a processing element in our envisioned Fresh Breeze system. We propose
that each target Fresh Breeze chip will contain 40 independent processing elements, so there
are 40 EUs in our simulator. The corresponding TNT thread, also called EU thread in this
case, running on the thread unit mapped to the EU will simulate the EU’s function, which
mainly includes two tasks. The first task is to provide the application programmers with the
Fresh Breeze runtime environment, that is, a data-flow oriented multithreading interface whose
semantics are quite similar to the multithreading model of Cilk[6], a parallel programming
runtime library. From a system software point of view, the first task is more like a runtime
kernel or an extremely simplified operating system. However, we should keep in mind that in
the real Fresh Breeze system, the runtime kernel is implemented entirely in hardware and the
exporting interface is at the instruction level, but not the system call as in the conventional
OS. The second task is to execute the application codes which are running on top of the Fresh
Breeze runtime kernel.

The Fresh Breeze runtime kernel provides two sets of interfaces for the application programs.
The first set is a spawn-join based multithreading API which enables the application program-
mers to build parallel programs on the Fresh Breeze simulator. The second set is a storage
access API. The storage API provides all the necessary data chunk operations as required by
the Fresh Breeze memory model. As we saw in Figure 1, the chunk access operations on TSUs
are handled by the EU runtime kernel itself, while the operations on MSUs are handled by the
simulation codes that run on the thread units for MSU. For example, if the accessed chunk is
cached in the TSU, then the EU runtime kernel will fetch the chunk data from the TSU directly.
However, if the chunk is not cached in the T'SU, then the EU runtime kernel will issue a chunk
access request to the MSU, and wait for the MSU to complete the requests. We will describe
the detailed implementation of the EU runtime kernel in Section 3.2.

Scheduler Unit (SU): The Fresh Breeze architecture supports a fine-grain dataflow ori-
ented parallel task execution model. At any time during the program execution, there will be
a large number of tasks ready to be executed. This would require the Fresh Breeze chip to
have some mechanism to evenly distribute those tasks across the 40 EUs at runtime, so as to
better utilize the available processor resources. In order to achieve that goal, we add a hardware
unit called a Scheduler Unit, on each target Fresh Breeze chip. The SU will help dynamically
balance the tasks across the 40 EUs by utilizing a type of work-stealing policy which will be
described in detail in Section 3. Similar to the EU implementation, the SU is also implemented
by a separate thread unit. The SU thread running on it will execute the simulation code to
simulate the function of the SU in the envisioned Fresh Breeze system. We will describe how
the SU works in Section 3.3.

TopStor Unit (TSU): Each TSU is implemented by a separate thread unit. It represents
the private L1 cache for each EU in the envisioned Fresh Breeze system, so there are 40 TSUs
in the simulator. As we mentioned previously, the EU runtime kernel will directly handle the

chunk operations on TSUs, so the thread unit that simulates the TSU is only used to provide
the scratchpad memory to store cached data chunks, which means that there is no execution
activity on that thread unit during the simulation. When the simulator starts up, each TSU
thread will initialize its private scratchpad memory layout, and then just go to sleep to wait
for the termination of the simulator. We will describe how the TSU works in Section 4.

MainStor Unit (MSU): Each MSU is implemented by a separate thread unit. As our
current simulation scheme only has two memory levels, the MSUs represent the permanent
storage units which comprise the second memory level. During the simulation, the MSU thread
will loop over the chunk requests dispatched from the EUs. As previously stated, each TSU,
as a private L1 cache, is bound to serve a specific EU, so their relationship is a one to one
correspondence. However, the relationship between MSU and EU has no such restriction, so
any MSU can receive chunk requests from any EU. To dispatch a request to the second level, the
EU will address the target MSU based on the chunk UID. There are a total of 64 MSUs in our
current simulator, and the storage space of the second level is equally divided across the 64 MSUs
in a linear manner. For example, if the size of the entire storage space is S, then the i** MSU
will store the chunks whose UIDs fall inside the range of [S* (i —1)/64, S *i/64]. Furthermore,
for the purpose of performance analysis, our current simulator has two configuration settings
according to the access latency to the second memory level. In the first setting, we assume that
the second memory level represents an on-chip L2 cache which has very low access latency, so the
EU runtime kernel will run in blocking mode. The blocking mode means that after dispatching
the chunk request to the MSU, the EU runtime kernel will be busy-waiting until the completion
of the request. However, in the second setting, we assume that the second memory level
represents external DRAM which has comparatively high memory access latency. Therefore,
the EU runtime kernel will run in non-blocking mode, which means that after dispatching a
request to the MSU, the EU runtime kernel will not wait for the request completion but instead
switch out the currently running application task and pick up another task which is ready to
execute. This manual will only discuss the implementation of the EU non-blocking mode which
is more complex than the blocking-mode implementation. We will describe the internal design
and implementation of the MSU in Section 5.

Profiling Unit (PU): Besides the previous four functional units, there is one other type of
functional unit, the Profiling Unit, which is included in our current simulator for performance
profiling. This is not necessary in the real Fresh Breeze system and is not shown in Figure
1. The PU is also implemented by a separate thread unit and there is only one PU in the
simulator. Its job is to collect the performance data at runtime and output the collect data to
the local disk files at the end of the simulation. Its implementation is quite simple and will not
be discussed in this manual.

In summary, there is a total of 146 thread units being used in the Fresh Breeze simulation:
40 thread units serve as EUs, 40 thread units serve as TSUs, 64 thread units serve as MSUs, one
thread unit serves as an SU and another one serves as a PU. Except for chunk data and chunk
meta-data, all other data structures used by the simulator are stored in scratchpad memory.
The chunk data and chunk meta-data are stored in external DRAM. The storage space of the

first level in our simulator is set to 20480 chunks, which is equivalent to 2.5 MB. The storage
space of the second level is set to 222 chunks, which is equivalent to 512 MB.

3 The Work Stealing Based Parallel Task Execution

This section describes the parallel task execution model of the Fresh Breeze architecture and how
it is implemented in the simulator. Section 3.1 gives a high-level description of the work-stealing
scheme, which is the policy used to balance the work across the processors at runtime. Section
3.2 and Section 3.3 describe the detailed implementations of the two types of the functional
units, EU and SU, which work together in the Fresh Breeze system to realize the work-stealing
based parallel task execution.

3.1 Work Stealing Scheme on the Fresh Breeze Chip

The work-stealing policy has proven to be a very efficient task scheduling policy for parallel
computing systems like the many-core chip modeled by our simulator. Here, a task is equivalent
to a thread in the conventional operating system concept. Under the Fresh Breeze execution
model, a task is a sequence of instructions which has no data dependences among other tasks
in the program during its execution. The basic idea of a work-stealing policy is that when a
parallel program is running on multiple independent processors and any one of the processors
has exhausted its local task queue, the exhausted processor will attempt to steal a task from
one of the other processors which has a non-empty task queue.

In our simulator, the work-stealing scheme is used for a many-core chip and will be im-
plemented by hardware in a real system. Based on that premise, we use a dedicated on-chip
hardware unit to facilitate task scheduling across the 40 EUs. The SU functions as a supporting
hardware unit whose role is to keep track of the work load for each of the 40 EUs, as well as to
help the EUs determinte from which EU to steal a task when they do not have any local tasks
ready to execute. There are three important data structures used in this scheme.

Pending Task List: Each EU has its own pending task list which contains the new tasks
which have been spawned by its locally running application tasks. The difference between the
pending task list and the active task queue, as in conventional operating systems, is that the
tasks on the pending list have not yet been executed, so they do not have any execution status.
In order to maximize performance, it would be very efficient to move such a task from a heavily
loaded EU to a lightly loaded EU to provide load balancing. Therefore, the tasks in the pending
list are the tasks that are available for stealing since the cost of task migration to a different
EU is relatively low. For example, when an EU has no work to do, it will find a victim EU and
try to steal a new task from its pending task list. It is obvious that the number of tasks on the
pending task list can be used as a hint for the workload of an EU.

Task Load Table: The task load table keeps track of the work load of all EUs on a
single Fresh Breeze chip. It is implemented as a bitmap with one bit for each EU. If the bit

is set, it means that the corresponding EU is overloaded or has high work load. Otherwise,
the corresponding EU has low work load. Consequently, the EUs which have high work load
should be candidates for work stealing. In the current simulator implementation, we pre-set a
threshold (TASK_LOAD_THRES = 2) to decide whether an EU is overloaded or not. The task
load table is updated by EUs when they spawn a new task to their local pending task list. The
SU will then utilize the work load status recorded inthe task load table to update the task steal
table. The latter will in turn be queried by the EUs to search for the victim EU when they
perform task stealing, which we will discuss below. In Section 3.2.3, we will further describe
how the task load table is actually implemented in the simulator.

Task Steal Table: As we mentioned previously, the task steal table is used to help the EUs
find a victim EU when they perform task stealing. The victim EU is the EU that provides the
new task from its local pending task list to the stealing EU. An EU will perform task stealing
only when they have no executable active tasks and their pending task list is empty. The task
steal table has one entry for each EU and the entry only records the ID of the victim EU. For
example, when the i*" EU performs task stealing, it will query the i*" entry of the task steal
table to find out the victim EU ID. Suppose that the current entry value is j. Then the i
EU will try to steal a task from the pending task list of the j* EU. Regardless of whether
the steal operation is successful or not, the " EU will always clear the i** entry in the steal
table after the query operation. The SU will continue updating the task steal table based on
the up-to-date work load distribution on the Fresh Breeze chip. Such handling is designed to
prevent an EU from repeatedly stealing tasks from the same EU, whose work load may change
over time.

3.2 Internal Design of EU

The EU represents a CPU on the target Fresh Breeze chip. It has two tasks in the simulation.
The first task is to provide the runtime kernel, and the other task is to execute the application
code on top of the runtime kernel. The runtime kernel works like an extremely simplified oper-
ating system kernel. It provides task management and storage access service to the application
through the well-defined Fresh Breeze API calls which will be described in Section 6 and Sec-
tion 7. Just like a conventional operating system kernel design, there are also two execution
contexts in the EU. The first is the context of the runtime kernel, and the other is the context
of the application task. As we know from general operating system knowledge, the execution
context generally consists of hardware context and software context. In our simulator design,
the hardware context includes the saved CPU register file, while the software context includes
the saved stack space snapshot. We will describe the data structures which are used in our
simulator to represent the application task and kernel execution contexts. Before that, we first
describe the private scratchpad memory layout of the EU that stores the execution status of
the EU, which includes the execution context of both running application tasks and runtime
kernel.

As shown in Figure 2, the private scratchpad memory of the EU has been divided into three

10

sections.

Protected TNT Runtime Kernel: This section contains the private data of the TNT
runtime kernel and it is a privilaged data area that is automatically protected by the Cyclops64
hardware mechanism. This section is transparent to users and application programmers and
is not accessible by application code. The rest of the scratchpad memory is left available for
application programs to use. Actually, the application programmer needs to specify in their
program approximately how many bytes of the private scratchpad memory they intend to use.
When the application begins executing on the Cyclops64 chip, the bootstrap procedure of the
TNT kernel will dynamically configure the size of the TNT runtime kernel data section as
required by the application. For example, if the total size of the private scratchpad memory is
T bytes and the application program wants to use A bytes, then the kernel size is K =T - A
bytes. The configuration of the kernel data section is done through setting the special boundary
protection related registers. As the Fresh Breeze simulator itself is an application program that
runs on top of the TNT kernel, we reserve the private scratchpad memory in the simulator by
the following macros.

#define KERNEL_SIZE (3%(1<<12)) //12 KB

#define SRAM_SIZE (64*(1<<10)) //64 KB

#define MEM SIZE (SRAM_SIZE-KERNEL SIZE) //52 KB
#pragma spm reserve_mem

uint64 reserve_mem[MEM_SIZE/sizeof (uint64)];

The compilation directive #£pragma spm is used to tell the compiler to place the variable
reserve_mem in the private scratchpad memory area of each thread unit on the Cyclops64 chip.
As it is the only variable in the simulator that needs to be placed in the private scratchpad
memory area, reserve_mem will be placed right after the TNT kernel data section. As we can see,
reserve_mem is defined as a linear byte array and its size is set to 52 KB. The macro SRAM_SIZE
defines the scratchpad memory size of each thread unit on the Cyclops64 chip, which is 64 KB
as specified by the Cyclops64 architecture. Since we do not use the global interleaved memory
in our simulator at all, we then set the size of the global interleaved memory section to be zero
and use the entire scratchpad memory as private memory. The above KERNEL_SIZFE macro
actually defines the size of the TNT kernel data section.

The resulting effect of the above macro definitions is that the data area that is occupied by
reserve_mem is under the control of our simulator program. We can reorganize the data area
however we want. In the case of the EU, we further divide this area into two sections. The first
section is the task slot array and the other is a data structure with the type of execution_unit
which is the EU descriptor. We will now describe the two sections.

Application Task Slot Array: There are a total of five task slots in the array. Each task
slot is used to store the execution context of an application task. As shown in Figure 2, a task
slot is defined as a union task_union. It has two members, task and stack. The task member has
the type of task_struct which records the hardware and system contexts. The stack member is
defined as a linear byte array with a size of 4 KB. It stores the software stack of the application

11

struct task_work{} N

struct task_queue{}

struct list_head entry

mutex_t que_lock

struct execution_unit{}

struct task_info

int state

struct task_gueue *owner

uintlé que_nr
—‘ struct list_head que_list

struct task_gueue tque

uintl6 wait_nr

struct task_host host

struct task_info{}

mutex_t free_lock

struct sched info *sched

handle_t slave_ticket

uintl6 free_nr

SEruct request_queue rque

int slave_index

struct list_head free_list

struct topstor_umnit *tsu

handle_t join_data

struct thread_sync *sync

void *mam

struct arg_info args

higher addr|

L5

lower addr

EU Descriptor

struct io_context ioctx

struct chunk_pool pool

struct execution_time time

struct execution_stat stats

struct task_work tws[EU_TLEN]

Application Task Slot Array []

union eu_request reqs[EU_RLEN]

TINT user space

TNT kemel space

Data Layout of Private Scratchpad Memory of EU

struct task_host{}

uintl6 used_nr

uintl6 free_nr

struct queue_list free_list

uintl6 wait_nr

struct quene_list wait_list

struct task_struct *curr_task

struct task_context sched ctx

high addr <7

TASK_SIZE = K15

lower addr <=

task. From Figure 2, we can see that one task slot has the size of its maximum sized member,
that is 4 KB. The task is placed at the bottom of the area while the stack starts from the top
of the area and grows downstairs. It should be noted that the choice of the number of task
slots and the size of each task slot is limited by the size of usable scratchpad memory on the

union task union{}

struct task_struct task

uint64 stack[TASK_SIZE/S]

<&

struct task_context{}

register_tregs[13]

current stack usage

register_tsp

grows downward

_l—b struct task_struct{}
struct queue_item entry
uint8 state
struct task_context ctx
stack top struct task_host *owner

register_t fp

struct task_struct task {}

register_t pc

handle_t slave_ticket

int slave_index

handle_t ticket/data

Figure 2: Data layout of the private scratchpad of an EU

Cyclops64 chip.

Next, we will take a look inside the task_struct structure to see how it defines the hardware

and system contexts for an application task.

state: This defines the running state of an application task. The two important states
are TASK_RUN and TASK_BLOCKED. The former state indicates that the task is currently
running on the EU, and the latter state indicates that the task is switched out of the EU and
is waiting for the completion of some events, such as the completion of a storage request or the

12

release of a free request slot. We will discuss the task state change in Section 3.2.2.

task_context: This embedded data structure defines the hardware context and spawn-join
related system context. We will describe the latter in Section 7. Here we first look at the
members used to define the hardware context: regs/15] saves R47 through R61 which are
specified in the Cyclops64 ABI as the callee save registers; sp saves R3, which is specified as the
stack pointer; fp saves R62, which is specified as the stack frame pointer; pc saves the program
counter. The usage of these members will be discussed in Section 3.2.3 to illustrate the software
implementation approach for context switching that is used in the Fresh Breeze simulator.

EU Descriptor: As shown in Figure 2, the EU descriptor with the type of execution_unit
contains or links to all information that is needed to record the execution status of the EU
during simulation.

tuid: This is a system-wide identifier for the thread unit that serves as an EU. The field is
a 16-bit word and consists of two parts, with the four high-order bits being used to denote the
type of thread unit. From Section 2, we know that there are five different types of thread units.
For the EU, the type value is set to 0. The remaining 12 bits are used to record the index of
the thread unit with the same type.

tque: This embedded data structure defines the pending task list of the EU. It should be
noted that any task on the pending task list has not yet been executed, so it does not have any
execution status except for some initial startup information. Therefore, each new task on the
pending task list is defined as a task_work structure, which we will describe in the next section.
The que_xxx fields define the in-use pending task list, while free_zzz fields define the free new
task slot list. Due to the limited size of scratchpad memory, the pending task list cannot grow
infinitely without a boundary. In our current implementation, the maximum size of the pending
task list is set to 64. The embedded tws/] in the execution_unit structure stores the new task
slots array. At the beginning of the simulation, all new task slots are put in the free list. When
the EU creates a new task, it gets a free new task slot from the free list (alloc_task() in task.c
file). In addition, when the EU starts a new task on the pending task list, it will put the used
new task slot back to the free list (free_task() in task.c file).

host: This embedded data structure defines the active task list or the current usage of the
task slot array. Here it is worth noting that the task slot array is different from the new task
slot array. The former records the execution context of an active task that has been executed
but hasn’t yet finished. The latter records the initial context of a new task that has not yet
executed. Obviously, the storage size of the latter is much smaller than the former. user_nrand
free_nr record the number of used task slots and the number of unused task slots respectively,
while free_list links all unused task slots. As we can see from Figure 2, it implements the linkage
through the item field in the task_struct structure which is a single-linked list; wait_nr records
the number of active tasks which are waiting for the free usable storage access requests and
wait_list links all such waiting active tasks together; curr_task points to the task_struct structure
of the currently running task; sched_ctz is an embedded task_struct structure which is used to
save the execution of the EU runtime kernel, but not the application task. The difference
between these two types of context is that the EU runtime kernel doesn’t need space to store

13

the software stack which is stored at the default TNT thread stack space that lies inside the
TNT kernel data section.

rque: This embedded data structure defines the storage request queue. The req_xzz field
defines the pending request queue and the free_zzz field defines the free request list. Similar
to the pending task list, the storage request queue cannot grow indefinitely. The total number
of available request slots is four times the total number of available task slots, and they are
stored in the regs/] array of execution_unit. The reason for this limit is that storage requests are
usually issued by application tasks, so the number of active requests is related to the number of
active tasks. Depending on the request status, each active request either represents a storage
access request issued from an EU to the MSU or represents the completion status of a finished
storage request. It is easy to see that if the request is in pending status, it should be placed
in the pending request queue of the MSU that waits to serve the request. However, if the
request is a completion notification, it should be placed in the pending request queue of the EU
that waits for post-processing. It should be noted that both the EU and MSU share the same
request_queue data structure to describe the request queue.

tsu: This points to the TSU descriptor of the type topstor_unit. It describes the status and
information of the TSU which is associated with the EU and serves as its private L1 cache unit.
This pointer allows the EU runtime kernel code to more easily access its private TSU.

3.2.1 Pending Task List

As we discussed in the previous section, the pending task list contains the newly created tasks
which have not yet begun execution. It will be accessed in the following scenario.

Create a New Task: When the application task requests to spawn a new task (spawn_one()
in Section 7) through the Fresh Breeze API, the EU runtime kernel will invoke the task_create()
function to serve the request. The task_create() function is implemented as follows (see task.c
file):

Step 1: Invoke task_alloc() to get a new task slot (tw) from the free new task list.

Step 2: Invoke init_task_info() (in task.c file) to fill in the tw with task startup information.
The task startup information consists of two parts. The first part consists of application task
code which contains the initial instruction pointer and input arguments. The second part
contains spawn-join related task hierarchical information which we will revisit in Section 7.2.

Step 3: Invoke push_task() (in task.c file) to put the new task at the head of the pending
task list. After inserting the new task, the push_task() function will also check to see whether
the number of pending tasks exceeds the preset overloading threshold. If it does, then it will
invoke task_load_set() (in sched.h file) to set the corresponding overload bit stored in the task
load table which is stored in the private scratchpad memory of SU, as we will see in Section
3.3.

Start a New Task: When there is an available task slot and the pending task list is
non-empty, the EU runtime kernel will invoke pop_task() to get a new task from the head of the

14

pending task list. As opposed to the push_task() function, if the pending task list is currently
in the overloaded status, which means that the corresponding overload bit is set in the task
load table, then pop_task() needs to check whether the pending task list is still overloaded. If it
is not, then it will invoke task_load_clear() (in sched.h file) to clear the overload bit in the task
load table.

Steal a New Task: When there is an available task slot and the pending task list is empty,
the EU runtime kernel will invoke steal_task() (in sched.c file) to try to steal a new task from
any of the other EUs. The steal_task() function is defined as follows:

Step 1: Use the atomic_set_and_return() routine to get the current victim EU ID from the
task steal table for this EU. The atomic_set_and_return() routine will finish the following two
steps in atomicity. The first step is to fetch the value of the victim EU ID and the second step
is to reset the corresponding task steal table entry to a special value of STEAL_BUSY, which
means that the task steal entry is stale and is waiting for the SU to update, as we will see in
its usage in the next step.

Step 2: Check the retrieved victim EU ID. If it is set to a normal EU ID, then go to Step 3.
If it is set to STEAL_BUSY, then it means that the task steal table entry is stale and the SU
has not had a chance to update it yet. As we know from Step 1, each time that the EU gets the
victim EU ID from the task steal table, it will also reset the entry to STEAL_BUSY. Once this
happens, the EU will invoke relaz() (in lib.h file) to take a short nap to busy wait for the update
by the SU and then return to Step 1 to retry. If the victim EU ID is set to STEAL_WAIT,
it means that there are no available EUs that have non-empty pending task lists, so the SU
cannot find a victim EU. Once that happens, steal_task() directly returns NULL to notify of
failure since there is no possibility that the SU can find a victim EU in a short time.

Step 3: Invoke __steal_task() (in sched.c file) to attempt to steal a new task from the specified
victim EU. Unlike pop_task(), __steal_task() will attempt to fetch a new task from the tail, but
not the head of the pending task list.

The rationale behind such a design is that we assume the tasks at the end of the tail of
the pending task list are normally at a higher layer of the task hierarchy tree than the tasks at
the head of the pending task list, as the former tasks are created earlier than the latter ones.
Furthermore, the tasks at higher layers will most likely be the start of a larger sub-computation.
Based on that information, it is beneficial to quickly balance the work load across multiple EUs
by stealing tasks from the tail of the pending task list rather than the head.

If __steal_task() fails to steal a new task from the specified victim EU, it may be due to the
possibility that the work load of the victim EU has changed and the SU has not yet updated.
If that happens, it will return to Step 1 to try again. Otherwise the stolen task is returned to
the EU runtime kernel.

In summary, the pending task list is manipulated in the following three ways: (1) a new
task will be inserted into the head of the list; (2) a new task will be removed by the local EU
from the head of its list; (3) a new task will be stolen by a remote EU from the tail of the list.

15

task_schedy)
.
¢) TASK_BLOCKED
task_resumer)

2,
S

Figure 3: Task state change diagram

3.2.2 Task State Change

An application task in the Fresh Breeze execution model has the following five states (as defined
in the task.h file).

TASK_NEW: This state indicates that the application task is a brand new task which has
not yet begun execution. The task in this state should be placed in the pending task list.

TASK_RUN: This state indicates that the application task is currently running on the
EU.

TASK_BLOCKED: This state indicates that the application task is blocked and waiting
for the completion of a storage request.

TASK_EXIT: This state indicates that the application task has finished execution and its
task slot will be reclaimed by the EU runtime kernel once it has been switched out of the EU
processor.

Figure 3 shows the task state change diagram under the Fresh Breeze task execution model.
As we can see from the figure, during the lifetime of an application task, it will experience the
following state change sequence.

(1) TASK_NEW to TASK_RUN: When starting a new task on the EU, the runtime kernel
invokes run_task() (in task.c file) to set up the initial execution context for the new task,
and then goes to the first instruction of the application code. During this process, the
task state will undergo a state change from TASK_NEW to TASK_RUN. In Section 3.2.4,
we will describe the implementation of run_task().

(2) TASK RUN to TASK BLOCKED: If the application code issues a synchronous stor-
age request like a chunk read or write operation, which we will describe in Section 6, the
EU runtime kernel will switch out the currently running task and pick up another ready
task so as to keep the EU busy with useful computation. The low speed storage access
time will be overlapped with the computation time of the other tasks.

(3) TASK_BLOCKED to TASK_RUN: When the storage request has been completed,
the MSU will put the request back into the pending request queue of the initiating EU.

16

Some time later, the EU runtime kernel will get the completed request from its pending
request queue (get_request() in req.c file). The I/O context information recorded in the
request will tell the runtime kernel to resume the execution of the application task which
issued the request. During this process, the task state will undergo a state change from
TASK_BLOCKED to TASK_RUN.

The task resume operation is implemented by the ezecute_resume() (in eu.c file) function
which consists of two steps.

Step 1: Retrieve the I/O context information from different types of storage requests. As
we will see in Section 6 and Section 7, there are three types of requests which will incur
task blocking. These requests are the chunk read operation, chunk write operation and
join ticket create operation.

Step 2: Invoke the task_resume() (in task.c file) function to wake up the blocked applica-
tion task. The task_resume() invocation will first set the task state to TASK_RUN, then
call task_sched() (in task.c file) to resume its execution.

(4) TASK_RUN to TASK_EXIT: When an application task is done, it will call task_exit()
(in task.c file) to terminate its execution. The function will first change the task state
from TASK _RUN to TASK_EXIT, and then call task_sched() to relinquish the EU. As we
will see in Section 3.2.3, task_sched() will reclaim the task slot of a switched out task if
its state is set to TASK_EXIT.

It is worth noting that if an application task issues multiple storage requests, it may go
back and forth between case (2) and case (3) several times during its lifetime.

3.2.3 The Handling of Task Context Switching

This section describes how to implement task context switching in the Fresh Breeze simulator.
As we have seen in previous sections, task context switching will occur either when an appli-
cation task relinquishes its execution or when the EU runtime kernel resumes the execution of
a blocking task when the waiting request has been completed. The job of context switching is
actually done by the task_sched() function. It is easy to see that task_sched() will handle two
kinds of context switching. The first case switches from the context of an application task to
the context of the runtime kernel and the other case switches back. In the former case, the
input argument to task_sched() is set to NULL, while in the latter case, the input argument is
set to the execution context descriptor (task_struct) of the application task. We will examine
each of these two cases separately.

Case 1: Context Switch from Application Task to Runtime Kernel

Step 1: Get the hardware context descriptor of the currently running task from the active
task list descriptor (prev_ctz = host->curr_task->ctz) and then set the curr_task field to NULL,
as the EU will execute runtime kernel code next.

17

Step 2: Get the hardware context of the runtime kernel from the active task list descriptor
(next_ctx = &host->sched_ctz).

Step 3: Call do_task_switch(prev_ctz, next_ctz) to perform the hardware context switch be-
tween prev_ctz (application task) and next_ctz (runtime kernel). The return value of do_task_switch()
is set to the hardware context descriptor of the switched out application task, and is saved in
local variable prev_ctz. It is necessary when we switch to the context of the runtime kernel that
the old value of prev_ctz is set to itself. We will later discuss do_task_switch() (in task.c file)
since the function deals with the particular features of the Cyclops64 architecture.

Step 4: Now we are in the execution context of the EU runtime kernel. As we got the
hardware context descriptor of the switched out application task in the previous step, we now
call finish_task_switch() (in task.c file) to handle the post-processing based on the current status
of the application task. If the current task state is TASK_RUN, then the runtime kernel has
nothing to do. Otherwise, the task state should be TASK_EXIT. In this case, the runtime
kernel needs to recycle its occupied task slot by calling task_delete() (in task.c file).

Case 2: Context Switch from Runtime Kernel to Application Task

Step 1: Get the hardware context descriptor of the next running application task from the
input argument (next_ctr = &nezt_ts->ctx).

Step 2: Get the hardware descriptor of the runtime kernel from the active task list descriptor
(prev_ctx = &host->sched_ctz).

Step 3: If the next running task is a brand new task, then change its state from TASK_NEW
to TASK_RUN.

Step 4: Set the EU’s current running task to be the next running task (host->curr_task =
next_ts).

Step 5: Call do_task_switch(prev_ctz, next_ctz) to perform the hardware context switch.
Once the function returns, the EU will be in the execution context of the next running appli-
cation task. It is worth noting that the EU either starts to execute the first instruction of a
brand new task, or execute the next instruction of a previously interrupted task. We will see
the difference in the following discussion.

Next we will take a look at how we handle the particular features of the Cyclops64 architec-
ture to implement the hardware context switch by using a software approach. The Cyclops64
architecture itself doesn’t provide a dedicated instruction to support the context switch. The
following description provides the actual code implementation of do_task_switch(). It is imple-
mented using inline assembly C.

#define switch_to(prev_ctx, next_ctx) do {

1. asm volatile("1ldd r43, %1\n\t" /* load prev_ctx pointer to temp register R43 */
"1ldd r44, %2\n\t" /* load next_ctx pointer to temp register R44 x*/
"stm r47, r43, r61\n\t" /* save callee save registers */

"std r62, 128(r43)\n\t" /* save frame pointer(r62)*/

"std r2, 120(r43)\n\t" /* save stack pointer(r3) */

g W N

18

6. "ldd r3, 120(r44)\n\t" /* restore stack pointer(r3) */
7. "bal r45, 4\n\t" /* get next program counter */
8. "addi r46, r45, 16\n\t" /* set return program counter of prev */
9. "std r46, 136(r43)\n\t" /* save return program counter of prev */
10. "1dd r46, 136(r44)\n\t" /* get return program counter of next */
11. "br r46\n\t" /* restore program counter of next */
/* from now on, next task/sched context */
12. "1dd r62, 128(r44)\n\t" /* restore frame pointer(r62) */
13. "std r43, %0\n\t" /* set prev_ctx pointer */
14. "ldm r47, r44, r61\n\t" /* restore callee save registers */
:"=m" (prev_ctx)
:"m" (prev_ctx), "m" (next_ctx)
:"r63" /* save & restore return addr automatic by GCC */
)
}while(0)

Lines 1-2 save the values of prev_ctr and next_ctz to unused registers R43 and R44. These

two registers have already been automatically saved by caller so that we can freely use them

during the context switch process;

Line 3 saves the 15 callee saved registers (R47 to R61) in prev_ctz->regs/];

Line 4 saves the stack frame register (R62) in prev_ctz->fp;

Line 5 saves the stack pointer (R3) in prev_ctaz->sp;

Line 6 restores the stack pointer from the next hardware context descriptor next_ctz->sp;
Lines 7-8 get the instruction pointer to be saved;

Line 9 saves the isntruction pointer in prev_ctaz->pc;

Line 10 gets the restore instruction pointer of the next context next_ctz->pc;
Line 11 jumps to restore insruction pointer of the next context;

Line 12 restores the frame pointer from the next context next_ctz-> fp;

Line 13 sets prev_ctz from saved value in R43;

Line 14 restores the callee saved registers from the next context next_ctz->regs;

It is worth noting that since a brand new task has not yet begun execution, it does not

have hardware context to restore as we do in Line 12 through Line 14. To avoid that, when

the EU starts to run a new task, the set_task_unit() function will initialize the task initial

program counter to task_helper (in task.c file) but not the first instruction of application code as
specified in the Fresh Breeze API (spawn_one() in fb_exm.c file). In addition, the set_task_unit()
function will also manipulate the initial software stack by setting the stack pointer properly. The

following is the actual code implementation of the task_helper routine. It is also implemented

using inline assembly C.

19

static void task_helper(void) {
asm volatile(

1. "ldm r8, r44, ri15\n\t" /* load input parameters */
2. "1dd r47, 64(r44)\n\t" /* set task entry function */
3. "br r47" /* jmp to the task entry function */

)3
}

Line 1 loads task input arguments into registers that are specified by the Cyclops64 ABI to
receive the function input arguments. The task input arguments are saved in ctaz->regs/] which
are initialized by set_task-unit() accordingly;

Line 2 loads the first instruction of the application code to R47;

Line 3 jumps to the first instruction of the application code;

3.2.4 Put it All Together: How EU Works?

Figure 4 gives a working diagram of the EU. It basically consists of a main loop which is
implemented by the eu_main() function (in eu.c file).

Step 1: Check whether the EU is still running. This is done using the macro IS_EU_RUN().
The macro checks the state field in the EU descriptor. If it is not set to THD_RUN, then jump
to Step 9 to terminate the EU thread. Otherwise, go to the next step as the EU is still running.

Step 2: Check if the pending request queue is empty or not. If it is empty, then get_request()
will return NULL and jump to Step 4. Otherwise, get_request() will return the pending request
at the head of the request queue and go to the next step to handle the request.

Step 3: The pending request represents the completed request that is replied from the MSU.
It contains the processing result that needs the EU for post-processing, in order to retrieve data
from the information recorded in the request, or resume the execution of a task that is being
blocked while waiting for request completion. The EU runtime kernel will invoke eu_ezecute()
(in eu.c file) to handle different types of requests. The function dispatches different request
handlers according to the specific request type.

Step 4: Check if there are any available task slots. This check is performed by has_free_task_unit()
(in task.h file) which checks host->free_nr. If there is no empty task slot, then jump to Step 7.
Otherwise, proceed to the next step.

Step 5: As we know from Step 4, there are still available task slots to use for the new task.
The runtime kernel tries to find a new task to run. This is done by grab_task(). The function
first tries to get a task from the head of the local pending task list by pop_task(). If it fails, then
the function tries to steal a task from any of the other EUs using steal_task(). If they both fail,
grab_task() returns NULL, and the runtime kernel jumps to Step 7. Otherwise, it will return
the new task descriptor.

Step 6: Run the newly grabbed task by calling run_task() (in task.c file). The function
will first allocate a task slot from the active task list by calling alloc_task_unit() (in task.c file).

20

Then it will call set_task_unit() as we previously discussed to setup the execution context for a
new task by initializing the newly allocated task slot properly. Once run_task() returns, either
the newly started task has exited, or it has blocked out of the EU to wait for the completion of
a storage request.

Step 7: Check whether the EU has done any useful work in the above steps. The criterion
is that either the EU has handled a pending request (did_req /= 0) or the EU has started a new
task (did_tsk != 0). If the EU has done nothing, it means that the EU has either finished all
of its work, or all its active tasks are blocked and waiting for the storage request completion.
Therefore, instead of rushing into the next iteration immediately, it is wise to go to Step 8 to
take a nap to wait for some progress from either the storage system or the other EUs which
will produce more new tasks that are available for stealing.

Step 8: Invoke relaz() to let the EU remain idle for several cycles.

Step 9: The EU has been flagged (IS_.EU_RUN() == FALSE) to stop and then quit the main
loop of the EU thread to terminate. This condition only occurs when the entire application
simulation has completed. It is flagged by the task_exit() invocation of the last task in the
application program. As we will see in Section 7.2, task_exit() takes an input value done. If
done equals 2, it means that the entire application simulation has completed.

3.3 Internal Design of SU

As shown in Figure 5, the scheduler information is the only data structure that is placed in
the scratchpad memory. However, it contains a number of embedded data structures that will
be used to implement two major functions in the Fresh Breeze simulation. One function is to
facilitate work-stealing based task scheduling on the Fresh Breeze chip. The other function is to
implement task defer and restore operations for excess new tasks that cannot be accommodated
by the limited size of the EU pending task lists. We will not cover the task defer and restore
operations in this manual. This subsection will focus on how the SU works to help the work-
stealing based task scheduling.

From the discussion in Section 2, we know that there are two work-stealing related data
structures in Figure 5. One data structure is task_load_table, which stores the task load table,
and the other is task_steal_table. As we can see from the figure, both of these two data structures
are very simple. The former is implemented by a bitmap (defined in bitops.c file). The latter
is implemented by an integer array. We have already discussed enough about how the EUs
update the task load table. Here, we will talk about how the SU thread updates the task
steal table. The main loop of the SU thread is implemented by su_main() (in sched.c file). Its
implementation is very simple and the loop iteration just calls su_update() (in sched.c file) to
update the task steal entry for each of the 40 EUs. For each EU steal entry, su_update() will
call the routine task_steal_set() (in sched.c file) to search the task load table from a random
offset.

21

1

~ IS_EU_RUNY)
<, - -
__—Check if the EU is still~.
running? =
//

Yes: req_did = rsk_did = FALSE

}\‘ gel_request()
Isthere any peﬁ?ﬂg\
4/{6(1116 st that waits for

B —_bandling?_—

Yes: req_did = TRUE
+ eu_execuie()

yes
Invoke the corresponding
request handle according to
the request types

“tieck if there is?ny;jias_ﬁ'ee_msfr_imrn’ﬂ
e gt available free task >

\ slots? _a
/
\I/
yes

- /l& grab_task() ne
Iy e 0000

-

~
<’ 10 get a new task

5
~__to start to run o
-

Sfound a new Il!'.!‘k;!‘jl(iffl'(f = TRLEJ'M?JM]CH 1o new task found

Start to run a new task

K freq did && !tsk run

= 3 T
Chetk if there is any uSeful
work has been done during
~_the previous steps?
/

no v
e relax()

Take a snap by being idle for
a couple of cycles (=10)

Terminate EU execution

Figure 4: The EU working diagram
4 The First Storage Level: the Private L1 Cache

This section describes the internal design of the first storage level. The first storage level in
our simulator represents the on-chip L1 cache in the target envisioned Fresh Breeze system. As

22

stk sohed ios) || struct task load_table;
struct task load_table 1dtlb

struct bitmap 1d_bm S

struct task_steal table sttlb
struct defer list dlist

struct sched_unit su > struct task steal table{}

struct thread sync sync uint64 victims[NR_EU]
uint8 bytes[TLD_BM SIZE]
struct defer unit dus[DEFER_NR] |

=

struct sched unit{}

uintl6 state

higher addr uint16 tuid
V4N

struct sched info *sched

struct thread_syne *sync

Schedule Info Descriptor

struct sched_stat stats

TNT user space

TNT kernel space

lower addr

Data Layout of Private Scratchpad Memory of SU

Figure 5: Data layout of the private scratchpad memory of the SU

we mentioned in Section 2, there is one private L1 cache unit for each EU, and the functional
unit which represents an L1 cache unit is called a TSU. The TSU does nothing during the
simulation, but simply provides its private scratchpad memory to store the L1 cache data. Due
to the size limitation of the scratchpad memory, we cannot store the chunk data on the TSU’s
scratchpad memory area, but only the cache index data structure which is used to realize the
mapping between the chunk UID and its location in the L1 cache unit. The cached chunk data
and its meta-data are stored in the external DRAM. Furthermore, in order to minimize the
usage of external DRAM, as we only have 1 GB of DRAM available on an individual Cyclops64
chip, the cached chunk shares the same physical data storage with the second storage level.
This will not have any impact on the correctness of our simulation.

The write-once property of the Fresh Breeze memory model makes the cache system design
in the Fresh Breeze system very easy. The most important benefit is that we can ignore the
cache coherence protocol in our design. The resulting L1 cache organization in our simulator
is as follows:

Cache Replacement Policy: We use an LRU (least recently used) cache replacement
algorithm. Under an LRU policy, the most recently accessed chunks are placed towards the
MRU (most recently used) end of the list. For example, if a chunk is acessed and hit in the

23

struct msu_usage(}

uint32 offset

uint64 counts[NR_MS1]

! struct topstor_unitf}

struct cache_spacef}

struct chunk_infof}

int state

uintl6 tot_nr

struct chunk *data

uinti6 tuid

struct eache _space cache

uintlé tree_nr

struct chunk_dese *meta

struct rh_root tree

struct thread_syne *sync

struct cxccutilm_unit *an

struct msu_usage usage

struct topstor_siat stats

struct eache_node nodes]NODE_NR]

uintl6 Iru_nr struct chunk_desc{}
struct list_head Iru_list handle_tuid

uintl6 free nr uint8_t type
struct list_head free list uint32 refent

struct cache_node *nodes

union tag tags{CHUNK_ELMNTS]

struct chunk_info *chunks

struct queue_list wait

higher addr struct cache_nodef}
uint8 cstate

struct list_head Iru
handle_t uid
struet rb_node rb_node

TSU Descriptor

struet queune_list wait

TNT user space

lower addr TNT kernel space

Data Layout of Private Scratchpad Memory of TSU

Figure 6: The data layout of the scratchpad memory of a TSU

cache, then the chunk will be moved to the MRU end of the list. If a chunk is accessed but
misses in the cache and there is no free chunk slot, then the replacement handler will evict out
the at the LRU end of the list to make to to store the newly accessed chunk.

Cache Index Structure: The cache index structure is used to map the UID of a chunk
back to its location in the L1 cache unit. To speed up the simulation, we choose the RED-
BLACK tree as the cache index data structure. A RED-BLACK tree is a balanced binary search
tree. The average search time of a RED-BLACK tree is much better than an arbitrarily built
binary search tree, and its rebalancing overhead is acceptable. Since the cache node insertion
and deletion operations are used in the cache miss handling, their rebalancing overhead is
negligible as compared with the overall cache miss handling.

Cache Storage Capacity: The cache capacity of each TSU is set to 512 (defined by
CACHE_NODE_NR in tsu.h file) chunks, which is equivalent to 64 KB. Therefore, total cache
capacity at the L1 cache level is 2.5 MB.

Figure 6 shows the data layout of the scratchpad memory of a TSU. As we can see, the
TSU descriptor is the only data structure stored in the scratchpad memory. It is a big data
structure and contains all the necessary information for the EU to access its L1 cache. We will
not describe the definition of the TSU descriptor and its embedded data structures.

tuid: The same as the field in the EU descriptor. It is a system-wide ID that identifies the

24

thread unit that serves as the TSU.

eu: This field points back to the associated EU. It is used to ease the simulation code
implementation.

cache: This embedded data structure is of type cache_space. It describes the current usage
status of the L1 cache. It is the key to the implementation of the L1 cache, and we will describe
the data structure in further detail.

usage: This embedded data strucure is of type msu_usage. It is used to keep track of
the storage usage of the MSUs at the second level. Having the knowledge of storage usage
distribution at the second level, a cache access operation which needs to allocate a new chunk
from the second level will direct the request to the MSU which currently has the lowest storage
usage. The benefit is that, in the long run, storage usage and access traffic will be balanced
across all storage units at the second level, thus avoiding access hot spot issues. As we can
see in the figure, its counts field is an integer array with each entry recording the number of
allocated chunks in the corresponding MSU.

nodes[]: This is an array of type cache_node. Each element in the array represents one cache
entry which contains all information about a cached chunk copy. As we can see in Figure 6,
cstate records the status of a cache entry. The status of a cache entry can be described by four
flags. CFREE indicates that the cache entry has not yet been allocated. CLRU indicates that
the cache entry is on the LRU list. CCACHE indicates that the cache entry is linked in the
cache search tree. CVALID indicates that the chunk data represented by this chunk entry is
valid. The lru field is the entry that links this cache entry into the LRU list, uid is the UID of
the cached chunk and rb_node is the entry that links this cache entry into the cache search tree.

We now examine the definition of cache_space:

tot_nr: This field stores the total number of cache entries found on a single TSU. As previ-
ously stated, this number is set to 512.

tree_nr: This field records the total number of cache entries that are linked in the cache
search tree.

tree: This field represents the root node of the cache search tree. Its definition follows the
standard RED-BLACK tree algorithm with a small extension to facilitate cache operations.

lru_nr and lru_list: These two fields enable LRU list manipulations.

free_nr and free_list: These two fields enable the free list manipulations. At the beginning
of the simulation, all cache entries are unused and they are collected in the free list. As the
simulation progresses, cache access operations will allocate cache entries from the free list for
the missed chunks.

nodes: This field points to the cache node entry array that is stored in the scratchpad
memory of the T'SU. This field will ease the code implementation.

chunks: This field points to the L1 cached chunk information array. Each entry in this array
is of type chunk_info. As we can see from Figure 6, data points to the location of the chunk

25

data that is stored on the DRAM and meta points to the location of meta-data that is stored
on the DRAM. We should notice here that as we mentioned at the beginning of this section,
in our simulator design, both of the two storage levels share the same physical chunk storage
copy. Therefore, the locations recorded by the chunk_info structure directly refer to the chunk’s
permanent storage locations at the second level.

As mentioned in Section 2, there is no activity running on the TSU during simulation. The
EU runtime kernel code will directly access the L1 cache. In Section 4.1, we will provide a
description of the implementation of the cache access operations that are used by the high level
chunk operations at the EU side to manipulate the L1 cache.

4.1 Cache Access Operations

In this section, we give the implementation of the two most important cache access operations.
The first operation is topstor_read() (in tsu.c file) and the other operation is topstor_write() (in
tsu.c file). They are the two key routines that are used to serve chunk read and chunk write
operations that are requested by the EU.

topstor_read operation:

Step 1: Check whether the requested chunk is already in the cache. If it is already in the
cache, go to the next step for cache hit processing. Otherwise, go to Step 5 for cache miss
handling. The check operation is completed by cache_search() (in cache.c file).

Step 2: Since the chunk is already in the cache, we further check its status by macro
TSU_VALID() (in tsu.h file). If it is valid, then go to the next step to get the chunk information
from cache entry. Otherwise, go to Step 4 to wait for the current chunk read operation to
complete. The concurrent chunk read issue is due to the fact that there are multiple active
tasks running on the EU. Suppose that one of the tasks issues a read operation to a chunk and
the chunk is missed in the L1 cache. Then the task needs to be blocked out to wait for the read
operation to be completed by the MSU. While at the same time, another task that takes over
control of the EU will issue a read request to the same chunk. Once this happens, the second
task will see the cache entry in the L1 cache but its status is set to invalid since the MSU has
not yet completed the request which was issued by the first task. As can be seen in Step 5, the
cache miss handling will first create a new entry in the L1 cache before it sends the request to
the MSU.

Step 3: Get the chunk information from the cache node which is stored in the chunk_info
structure. The chunk information needed to complete a chunk read operation at the EU side
are the locations of chunk data and meta-data. This enables the EU runtime codes to copy the
defined data elements from the DRAM to the application provided buffer. This copy operation
is performed by get_chunk_info() (see cache.h file). After this step, the cache hit handling is
completed, then jump to Step 10 to return.

Step 4: Invoke tsu_request_wait() (in tsu.c file) to wait for the completion of the ongoing
chunk read operation. The function inserts the current application task slot into the wait quete

26

___ cache_searchy)

”ﬁck if the chuu&‘
< already in cache?

T =

—

[

yes

- TSU_VALID()
- i

= “heck if the data of the—-
“~__chunk 1s valid or not

TG

o
get _chunk_info() Isu_request_wair()
h 4

Copy the cached chunk Wait for the on-going chunk
information into the request read operation from the
& update LRU list MSU to complete

Iru_hit()

fopstor_inseri()

Allocate a new cache node
to store the new chunk and
insert it into the TSU

S

L rsu->locate()

Locate the target MSU that
contains the requested chunk

b rediiect_request()

Dispatch the request to the
target MSU

task _schedr)

Wait for the MSU to
complete the request

ke topstor_push(}

Update the cache node entry
with the chunk information
stored in the replied request

- cache miss handling

p Return

Figure 7: The diagram of topstor_read() operation

headed at the wait field of the cache entry, and then calls task_sched() to relinquish the EU.
Once the function returns, the previous chunk read operation has been completed and jumps

27

back to Step 3 to complete the chunk read operation.

Step 5: Since the chunk is not in the cache, invoke topstor_insert() (in tsu.c file) to allocate
a new cache node and also insert it into the L1 cache. The concrete operations include inserting
the new cache node into the LRU list and the cache search tree. We should note that at this
time, cache entry status is set to invalid.

Step 6: Based on the chunk UID, the tsu->locate() method calculates the target MSU that
stores the chunk. As stated in Section 2, the chunk storage space is linearly divided among the
64 MSUs, so the calculation is a simple division. Once we locate the target MSU, we go to the
next step to dispatch the request to the target MSU.

Step 7: Invoke redirect_request() (in req.c file) to insert the request to the head of the pending
request queue of the MSU (see Section 5 for more details).

Step 8: Invoke task_sched() to relinquish the EU to wait for the request completion by the
MSU. Once the function returns, the MSU has completed the read request.

Step 9: Invoke tsu_push() (in tsu.c file) to update the cache entry with the information
recorded in the replied request as well as change the status of the cache entry to valid. At the
same time, tsu_push() will call tsu_request_wake() to wake up any tasks that are blocked on this
cache entry.

Step 10: All work is completed. Return to the caller.
topstor_write operation:

Step 1: Invoke tsu->select() method to pick up an MSU to allocate a new chunk for this
write operation. As stated earlier in this section, the selected MSU should be the one with the
lowest chunk usage.

Step 2: Invoke redirect_request() to insert the request to the head of the pending request
queue of the MSU.

Step 3: Invoke task_sched() to relinquish the EU to wait for the request completion by the
MSU. Once the function returns, the MSU has completed the write request.

Step 4: Invoke tsu_push() to allocate a new cache entry and then fill in the cache entry
with the chunk information recorded in the replied request. Next, insert the initialized cache
entry into the cache system. It is worth noting that tsu_push() is used by both read and write
processing. Its implementation is comparatively complex as it will first check whether the chunk
is already in the cache. If it is already there, then the function only needs to update its content,
which is the case for the chunk read operation. Otherwise, it will call tsu_insert() to perform
the additional work to create a new cache entry for the chunk. That is the case for the chunk
write operation.

Step 5: All work is completed. Return to the caller.

28

isu-=select()

Choose a target MSU to
serve the request

- redirect_request()

Dispatch the request to the
selected MSU

task_schedy)

w

Wait for the MSU to
complete the request

- fopsior_pushf)

Allocate a new cache node and fill-in
with the chunk information recorded in
the replied request. After that, insert the

new cache node into the L1 cache

!

Return

Figure 8: The diagram of topstor_write() operation

5 The Second Storage Level: the Main Memory

This section describes the internal design of the second storage level. The second storage level
is used in our simulator to simulate the main memory in the envisioned Fresh Breeze system.
As we mentioned in Section 2, there are 64 MSUs in the second level with each MSU containing
about 8 MB of storage space. This yields a total storage capacity of 512 MB at the second
level. In our current simulator design, the entire storage space is divided across the 64 MSUs
in a linear manner for simplicity. Of course, any advanced non-linear space division approach
is highly encouraged by the Fresh Breeze memory model.

Figure 9 gives the data layout of the scratchpad memory of the MSU. As shown in the figure,
the MSU descriptor is the data structure that is stored in the scratchpad memory. It includes
several embedded data structures to present the status of the MSU. The most important one
is storage_space which keeps track of the chunk allocations for that MSU. The res_bm field is
a bitmap that is used to record whether each chunk stored in the MSU has been allocated
or not. Since the second level is the lowest storage level in our current simulator, we use the
bitmap to keep track of chunk allocation. If the bit in the bitmap is set to one, it means that
the corresponding chunk has already been allocated, otherwise it has not been allocated. The
offset field denotes the starting chunk UID of the storage space that is stored on that MSU. The
chunks field points to the data chunk array which is stored on the external DRAM. The metas

29

L’ struct storage_spacef}
struct bitmap res_bm T
handle_t offset

struct chunk *chunks

struct chunk_desc *metas

struct mainstor_unit{}

int state
uintl6 tmid

struct storage_space space

higher addr
L

struct request_queue rque
MSU Descriptor struct thread_syne *sync
uint8 next_tsu
struct topstor_unit *tsus|[REL_TSUS]
struct mainstor_stat stat

TNT user space

msu_lookup_fn locate
uint8 bytesiMSU_BM_BYTES]
struct storage_request reqs|]

lower addr TNT kernel space

S

Data Layout of Private Scratchpad Memory of MSU

Figure 9: Data layout of scratchpad memory of an MSU

field points to the associated meta-data array which is also stored on the external DRAM.

The meta-data associated with each chunk is defined by the data structure chunk_desc. Its
definition is shown in Figure 6. Before we explain the main memory access operations, we need
to examine its definition.

uid: The chunk UID that uniquely identifies the chunk in the system. It is a 64 bit integer.

type: This field defines the type of the chunk. There are three types of chunks (defined in
chunk.h file). CHK_DATA indicates the chunk is a normal chunk; CHK_JOIN1 indicates the
chunk is a join ticket chunk; CHK_JOIN2 indicates the chunk is a join data chunk. We will
describe the latter two special types of chunks in Section 7, which are utilized to support the
task execution model.

refent: This is the usage reference count of a chunk. It consists of two subfields. The higher
order 16 bits count the references held by the L1 cache copies and the lower order 16 bits count
the references held by the application task. A chunk can only be recycled when both its user
reference count and cache reference count go down to zero. Otherwise, the chunk cannot be
recycled. The user reference count will be released by the Fresh Breeze API call chunk_down()
(in fb_exm.c file). The cache reference count will be released when the chunk has been evicted
out of an L1 cache.

There are two things worth noting here. The first thing is that once the user reference count
reaches zero, the chunk can no longer be used since the application has already finished using

30

it. The other thing is that there can be such a situation where, although the application is no
longer using the chunk, some TSUs still keep the unused chunk copy in their L1 cache. Once
this happens, the chunk will stay in the memory until the last TSU has evicted the chunk out
of its L1 cache.

tags: This is a byte array with 16 (where CHUNK_ELMNTS equals 16) elements. Each
byte in the array defines the data semantics of the chunk data element. As each chunk has
128 bytes, there are 16 data elements in a single chunk. A data element in a chunk can be
either a scalar data value (DATA64) or a pointer to another chunk (HANDLE). We also allow
partially defined data chunks, which means that some of its data elements can be left undefined
(UNDEF).

During the simulation, the MSU thread will loop over the storage requests sent from the
EU or some other MSUs (implemented by msu_main() in msu.c file). The latter is for recursive
garbage collection. The routine that is used to service the storage request is msu_execute()
(in msu.c file). Its implementation is quite similar to eu_execute() as it will invoke a specific
request handler according to the request type. In the following subsection, we will describe the
implementation of two important main memory access operations: read and write.

5.1 Main Memory Access Operations

In this subsection, we describe the implementation of two major main memory access operations
(read and write), which are implemented by the routines mainstor_read() and mainstor_write()
respectively (in msu.c file).

mainstor_read operation

Step 1: Invoke msu_find_chunk() (in msu.c file) to find the locations of the requested chunk
data and its meta-data in the external DRAM. Inside this function, it will perform a sanity
check on the access, such as whether there is any user reference count held on this chunk. As we
know, in the Fresh Breeze memory model, a chunk can receive a read operation only after it has
been written and sealed in the storage system, which will hold an initial user reference count
on this chunk. Based on that, we can infer that the system is incorrect if the MSU receives a
read request to a chunk whose user reference count is zero.

Step 2: Increase the cache reference count on this chunk for this read operation. As we know,
the EU will hold a copy for this chunk in its L1 cache. This is performed by inc_chunk_copies()
(in chunk.h file).

Step 3: Save information related to the request, such as the chunk locations and the current
chunk usage of this MSU, etc. This information will enable the EU to proceed with the read
request and update its local second-level storage usage status.

Step 4: Reply back to the pending request queue of the EU. This is performed by re-
ply_request() (in req.c file).

mainstor_write operation

31

Step 1: Invoke msu_alloc_chunk() (in msu.c file) to allocate a data chunk.

Step 2: Similar to Step 2 of mainstor_read(), we then increment the cache reference count
of this newly allocated chunk for this initial write operation.

Step 3: Similar to Step 3 of mainstor_read(), we save information related to the request,
such as the chunk location and the current chunk usage of this MSU, etc.

Step 4: Reply back to the pending request queue of the EU.

6 The Implementation of Chunk Operations

This section describes the implementation of the storage access interface. The storage access
interface enables the application tasks to manipulate the data chunks and construct the data
structures as needed by the program. This interface represents the storage part of the Fresh
Breeze API. Section 6.1 describes the prototype syntax of the interface. Section 6.2 discusses
its internal implementations.

6.1 Storage Access Interface

In our simulator, we support four types of chunk operations that are defined as part of the
Fresh Breeze API. We will now discuss the programming interface of these operations.

int chunk read(handle_t uid, struct chunk *buff, union tag *tags)

Description: This function is used to read a data chunk from the storage system into the
application provided buffer. Along with the chunk data, this function will also return the tag
information associated with this data chunk, enabling the application program to check the
types of its data elements.

Parameters:
uid: The UID of the chunk to be read.

buff: The application provided buffer which is used to receive the chunk data from the
storage system.

tags: The application provided buffer which is used to receive the chunk tags from the
storage system.

int chunk_write(handle_t *uid, struct chunk *buff, union tag *tags)

Description: This function is used to write a chunk of data into the storage system. The
application program not only needs to provide the buffer that contains chunk data which needs
to be sealed, but also the buffer that stores the tag information associated with the chunk data.
The latter information will be used by the storage system to define the types of data elements
located in the chunk. In addition, the application programs needs to provide a 64 bit integer
pointer that will be used by the storage system to save the UID of the newly allocated ata

32

chunk. The application program can later retrieve the previously written chunk by using the
returned chunk UID.

Parameters:

uid: This points to a 64 bit integer that will be used to receive the UID of the newly sealed
chunk.

buff: The application provided buffer which is used to pass the chunk data to the storage
system.

tags: The application provided buffer which is used to pass the associated chunk tags to
the storage system.

void chunk_up(handle_t uid)

Description: This function is used by the application to hold a reference count on a chunk.
It should be called by the application program before a task starts to use a chunk.

Parameters:
uid: The UID of the requested chunk.
void chunk_down(handle_t uid)

Description: This function is used by the application to release a reference count on a
chunk. It should be called by the application program once a task has finished its usage of a
chunk.

Parameters:

uid: The UID of the requested chunk.

6.2 Internal Implementations

This subsection will use chunk_read() and chunk_write() as examples to illustrate how the sim-
ulator implements the storage access API.

chunk _read operation

Step 1: Invoke task_alloc_request() (in req.c file) to allocate a free request. The allocated
request will be used to store the request information (see Step 2), and later will be used to save
the request processing result from the MSU.

Step 2: Invoke build_read_request() (in req.c file) to set up the request accordingly. This will
save the application provided buffer pointers into the request along with the requested chunk
UID and also set the request type to READ.

Step 3: Invoke topstor_execute() (in tsu.c file) to access its private L1 cache to service the
request. The topstor_execute() function is similar to eu_ezecute(). It will invoke a specific
request handler based on the request type. In this case where it is a read request, then the
topstor_read() handler will be invoked. As shown in Section 4.1, when this function returns,

33

the request has completed whether it is served from the L1 cache (cache hit) or from the main
memory (cache miss).

Step 4: Invoke complete_read_request() (in req.c file) to copy the chunk data and its as-
sociated tag information from somewhere in the storage system (or specifically, the external
DRAM) to the application provided buffer. The request will contain all necessary I/O infor-
mation to enable the copy operations. The tag information can accelerate the copy operations
as the undefined data elements will not need to be copied.

Step 5: Invoke free_request() (in req.c file) to free the request.

chunk _write operation

Step 1: Invoke task_alloc_request() to allocate a free request.

Step 2: Invoke build_write_request() (in req.c file) to set up the request accordingly.

Step 3: Invoke topstor_execute() to access its private L1 cache to service the request. The
topstor_write() handler will be invoked by this function to handle the write request. The
topstor_write() function has already been discussed in Section 4.1. Once this function returns,
the request has been completed by the storage system.

Step 4: Invoke complete_write_request() (in req.c file) to store the application provided chunk
data and its associated tag information into the locations specified by the storage system. The
locations are where the newly allocated chunk is stored by the storage system. The function
also needs to save the UID of the new chunk into the user provided buffer. It is worth noting
that in our simulator design, we delegate all data copy operations to the EU side (the same for
the chunk read case). This design choice is based on the features of the Cyclops64 architecture.
The goal is to reduce the data transfer time between scratchpad memory and external DRAM
in order to speed up the simulation.

Step 5: Invoke free_request() to free the request.

7 The Implementation of the Spawn-Join Mechanism

This section describes the spawn-join based parallel task execution model in the Fresh Breeze
system. Section 7.1 discusses the principles of the spawn-join mechanism used in the Fresh
Breeze system. Section 7.2 describes the syntax of the task management interface exported
to the application program of the spawn-join mechanism. Section 7.3 describes the internal
implementation of the interface.

7.1 The Principle of the Spawn-Join Mechanism

The spawn-join based parallel task execution model supported by the Fresh Breeze system
requires the application programmer to split a large computation procedure into a number
of phases. Each phase will consist of a group of small tasks. According to the spawn-join

34

ctx: ctx:

slave_ticket=X slave_ticket =X
slave_index=7Y slave index=7Y
ticket=M data=N

6 task_create() | Continuation

Master Task — P
Task
3z 4 task_exit()
o 1 join_init() 7 join_fetch()
z | v
3 : ticket chunk data chunk
e :
etx: I b . _UID=M UID=N
slave ticket=M slave_ticket =M & join ticket
slave_index =0 slave index = |
ticket =X ticket=¥X
worker taskg worker task

\—5 join_update()

Figure 10: Join Ticket and its Relationship with Master Task, Continuation Task and Worker
Tasks

mechanism, the roles of the tasks in the group are different. There are types of tasks: master
task, continuation task and worker task. We will now discuss the functions of these three
different types of tasks and how they cooperate to finish a computation job in parallel.

Master Task: This is the initial task in a task group. There is only one master task per
group. The job of the master task is to initialize the computation and fork a group of worker
tasks to perform the computation.

As shown in Figure 10, the master task will first invoke join_init() (in fo_exm.c file) to create
a join ticket. As we saw in Figure 10, the join ticket consists of two chunks. One chunk is the
join ticket chunk which controls the join operation involved with the spawned worker tasks.
The other chunk is the join data chunk which is used to collect the results sent by the worker
tasks. Next, it will create a number of worker tasks by invoking spawn_one() (in fb_exm.c file).
Each invocation will create a new worker task. For each worker task, the master task needs to
specify the task function, input arguments and join index. As we will see below, the join index
specifies the element in the join data chunk that saves the result produced by this particular
worker task. Different worker tasks must not share the same join index. In the example shown
in Figure 10, the master task has created two worker tasks. The left worker task has an index
value of 0, while the right worker task has an index value of 1. As we can see from the figure,
the spawn-join related information of a task is stored in task_context. The three fields contained
in this data structure are slave_ticket, slave_index and a union of ticket and data. As a worker
task, slave_ticket is the UID of the join ticket created by its master task and slave_indez is the

35

struct join_ticket{}

uint64 count

uint64 limit

uint64 mask
handle_t data
uint64 main
uint64 nr
uint64 args[MAX_ARGS]
handle_t slave_ticket

uint64 slave_index

Figure 11: The definition of the join ticket chunk

join index. Depending on the role of the task, the union field has different uses which will be
explained in the remainder of this section.

Referring back to Figure 10, once the master task has spawned the worker tasks, it has
completed its work. It will then invoke task_exit() to terminate. It should be noted that due
to the limited size of a chunk, there can be at most 16 worker tasks participating in a join
operation.

Worker Task: The worker tasks are the workhorse of the group. They are created by the
master task. Once they have completed their computation, they send the computation result
to the join ticket by invoking join_update() (in fb_exm.c file). As we can see from Figure 10,
once all worker tasks have completed, the continuation task will be created automatically by
the runtime kernel using task_create(). First, the task function and input arguments of the
continuation task are specified by the master task in the join ticket chunk. When the last
worker task reaches the join ticket, the storage system will notify the EU which hosts that last
worker task about this event. The notification is piggybacked in the reply request to the join
update operation along with the necessary startup information for the continuation task, which
is previously stored in the join ticket chunk. Sometime later, when the EU runtime kernel
checks the replied request, it will create the continuation task accordingly.

Continuation Task: The continuation task is designed to retrieve the results from the
worker tasks, and after post-processing, it may also initiate the next phase of computation with
the role of a master task. As we can see from Figure 10, the continuation task inherits the
values of slave_ticket and slave_index from the master task. It is worth noting that for a master
task, the union field of task_context is cast to ticket which is the UID of the created join ticket
chunk. However, for a continuation task, the union is cast to date which is the UID of the
created join data chunk. The continuation task utilizes the UID stored in data to fetch the
computation result produced by the worker tasks. This is performed by invoking join_fetch()
(in fb_exm.c file). Since the continuation task may initiate the next phase of computation, the
union field then needs to be reused as a ticket. As a result, the implementation of join_fetch()
will reset the data field to zero after loading the join data chunk.

36

Figure 11 provides the definition of the join ticket chunk, which plays a critical role in the
implementation of the spawn-join based task management mechanism under the Fresh Breeze
memory model. Its content is defined as follows:

count: The number of worker tasks that have completed their computation and arrived at
the join point. As we know from the above discussion, once a worker task has finished its job,
it will call join_update() to send its computation result to the join ticket. The MSU that stores
the join ticket will then update the count field of the join ticket chunk and save the computation
result into the element of the associated join data chunk which is specified by the worker task’s
slave index.

ltmit: The total number of worker tasks that are involved in the join operation. This
parameter is set by the master task in the join init operation. As we previously mentioned, a
data chunk can contain at most sixteen data elements, so the number of worker tasks that can
be involved in a single join operation can also be at most sixteen.

mask: This is a sixteen bit vector that is used to mark the arrival of the worker tasks. For
example, if the 7th bit in the mask vector is set, then it indicates that the worker task whose
slave index is 7 has arrived at the join point.

data: This is the data chunk handle which points to the associated join data chunk.
main: This is the task function pointer of the continuation task of this join operation.

nr: This is the number of input arguments to the continuation task. It is worth noting that
under the Fresh Breeze architecture, the number of input arguments to a task function can be
at most eight. Such a limitation is due to the limited size of a join ticket chunk.

args: This is the input argument array of size 8 (when MAX_ARGS is equal to 8).

slave_ticket: This is the UID of the join ticket chunk that the master task joins as a worker
task. As we know that the continuation task will inherit the system execution context from its
predecessor - the master task, this value will be set for the continuation task before it begins
to run on the EU.

slave_index: This is the slave index of the master task in the join operation which is identified
by the slave_ticket. 1t is also part of the system execution context that the continuation task
will inherit from its master task.

7.2 Task Management Interface

In our simulator, we have defined five task management operations. They represent the task
management portion of the Fresh Breeze API. We will now discuss the programming interface
of these five operations one-by-one.

int join_init(int limit, void *func, struct arg_info *args)

Description: This function is used by the master task to create a join ticket to start a new
phase of computation.

37

Parameters:

limit: The number of worker tasks involved with this join operation.
func: The task function pointer of the continuation task.

arg: The input arguments to the continuation task.

int spawn_one(int index, void *func, struct arg_info *args)
Description: This function is used by the master task to create one worker task.
Parameters:

index: The join index of the worker task as specified by the master task.
func: The task function pointer of the worker task.

arg: The input arguments to the worker task.

void join_update(int type, data_t val)

Description: This function is used by the worker task to send a data value or record to
the join ticket.

Parameters:

type: The type of the data element.

val: A simple scalar value or a record handle which is specified by the parameter type.
handle_t join_fetch(void)

Description: This function is used by the continuation task to retrieve the UID of the join
data chunk which contains the computation results produced by the worker tasks.

Parameters: NULL
void task_exit(int done)

Description: This function is used by any application task to terminate execution explic-
itly. It is worth noting that the runtime kernel will implicitly terminate the task execution
inside the join_update() function.

Parameters:

done: This value indicates the type of task termination. It can take any one of the following
three values: 0 indicates that it is a normal task termination requested by the application task;
1 indicates that the task termination is requested by the runtime kernel but not the application
task. In the implementation of task_exit(), if done is set to 1, then it does not need to invoke
task_sched() to change execution context as we are already in the runtime kernel context; 2
indicates that the entire application is finished, so task_erit() needs to flag all functional units
in the simulator to stop.

7.3 Internal Implementations

This subsection describes the implementation of the task management API calls.

38

join_init operation

The join_init() function accepts the number of worker tasks involved in this join operation,
the task function pointer, and input arguments of the continuation task as its arguments. It
will then invoke create_join_ticket() (in fb_exm.c file) to perform the following steps.

Step 1: Invoke task_alloc_request() to allocate a free request.
Step 2: Invoke build_create_request() (in req.c file) to set up the request accordingly.

Step 3: Invoke topstor_ezecute() to send the request to an MSU to allocate and initialize
two special chunks for the join ticket. One chunk is the join ticket chunk (of type CHK_JOIN1)
and the other is the join data chunk (of type CHK_JOIN2). The request handler installed at
the TSU to handle the join init request is topstor_create() (in tsu.c file). The function will
select the MSU which currently has the lowest chunk usage to service the request, and then
put the request into the pending request queue of the selected MSU. Next, the function calls
task_sched() to relinquish the EU to wait for completion from the selected MSU. Therefore,
when topstor_create() returns, the join ticket has been created inside the storage system. We
will now describe how the MSU services the join init request.

Step 4: Fetch the UID of the created join ticket chunk from the acknowledged request.
Step 5: Call free_request() to free the request.

Step 6: Return the UID of the join ticket chunk to its caller, the join_init() function. The
latter function will save the UID in the ticket field of the current task’s execution context
structure (see Figure 10).

As we mentioned above, the creation of two special chunks is performed by the MSU. The
function to handle the creation is mainstor_create(). Its implementation is straightforward.

Step 1: Call msu_alloc_chunk() to allocate a join ticket chunk of type CHK_JOINI.
Step 2: Call msu_alloc_chunk() to allocate a join data chunk of type CHK_JOINZ2.

Step 3: Call init_join_ticket() (in chunk.c file) to initialize the join ticket chunk. This consists
of setting up the connection between the join ticket chunk and join data chunk by setting the
data field to point to the join data chunk (see Figure 11). The join ticket is configured by
setting the limit, count and mask fields. The task startup information of the continuation task
is saved in the nr, args and main fields.

Step 4: Save the UID of the created join ticket chunk in the acknowledged request to notify
the EU runtime kernel. The EU runtime kernel will save the UID in the ticket field of the
execution context of the currently running task (which should be a master task). This value
will be used by the following Fresh Breeze function call spawn_one() when it creates the worker
task for this join operation.

Step 5: Call reply_request() to reply to the EU.

Figure 12 shows the implementation diagram of the join init operation in the Fresh Breeze
simulator.

39

join_init() send the request ¥
L i mainstor crealef)
create join_ticket()
i mus_alloc_chunk(} G—]
l—v topstor_create() : .

; i imit_join ticket()
I—- redirect requesi() - b

v
LD' task _sched() * reply request()
wait wakeup

EU MSU

Figure 12: The diagram of a join init operation in the Fresh Breeze simulator

spawn_one operation

The spawn_one() function is called by the master task after join_init() to create a worker
task for the join operation. Unlike join_init(), there are no storage operations involved in
spawn_one(). Tts work is performed entirely by the EU runtime kernel. The spawn_one()
function is simply a wrapper function for task_create(), which we have already discussed in
Section 3. It is worth noting that in init_task_info(), the runtime kernel will save the spawn-
join related system context information in the new worker task slot (slave ticket and slave
index). The slave index is specified by the input argument to spawn_one() and the slave ticket
is set to the value of the ticket field from the current task’s context, which is the UID of the
join ticket chunk created by the preceding join_init() function.

join_update operation

The join_update() function is used by the worker task to send its own computation result
to the join ticket. This function sends a join update request to the MSU that stores the join
ticket chunk and then terminates the worker task. When the MSU completes a join update
request from any non-final worker task, it will simply free the request after the update operation.
However, if it is the update request from the last worker task, the MSU will reply to the request
to tell the EU that executes the last worker task about the completion of the join operation.
This is done by setting a flag (STATUS-CONT in req.h file) in the replied request. The MSU
will also store the continuation task startup information inside the replied request to enable the
EU to start it. The implementation of join_update() is shown as follows.

Step 1: Call update_join_ticket() (in fb_exm.c file) to send a join update request to the
corresponding MSU. The join update request should include the slave index of the worker
task and its computation result which can be either a scalar 64-bit value or a chunk pointer
to a data record. It is worth noting that after dispatching the update request to the MSU,
update_join_ticket() will return immediately without waiting for the completion of the request
from the MSU, as the worker task has finished its work and can terminate immediately.

Step 2: Call task_exit() to terminate the task.

On the MSU side, the join update service routine is mainstor_update() (in msu.c file). Its
implementation is shown as follows.

40

Join -_a,;pdmg/j send the request v
|_, i mainstor update()
wpdate join ticket())
msu_join update() .

o

teply request() free request)

|—> topstor update()

|-> redirect request(} - i

EU: task context MSU

reply the request

¥

execute update()

|—> task createf)

EU: kernel context

Figure 13: The diagram of a join update operation in the Fresh Breeze simulator

Step 1: Call msu_join_update() (in msu.c file) to update the status of the join ticket chunk,
such as incrementing the count field. It also saves the computation result included in the update
request into the corresponding data element of the join data chunk.

Step 2: Check whether the count value of the join ticket chunk equals its limit. If it is
equal to the limit, then the MSU will return the request to the EU to notify it about the
completion of the join operation and will also attach the necessary task startup information for
the continuation task and the UID of the join data chunk into the returned request. Otherwise,
the MSU will simply free the update request.

The service routine of the EU to service the replied update request is ezecute_update() (in
eu.c file). This routine retrieves the continuation task information from the replied request and
then creates a new task on its local pending task queue.

Figure 13 shows the implementation diagram of a join update operation in the Fresh Breeze
simulator.

join_fetch operation

The join_fetch() function is used by the continuation task to retrieve the computation results
of the worker tasks from the storage system. The function returns the UID of the join data
chunk. Then the continuation task can use the UID to read the chunk data from the storage
system. It is worth noting that the EU runtime kernel will automatically reset the data field of
the continuation task’s system context. This field will later be reused to store the UID of the
join ticket chunk if the continuation task needs to start a new computation phase.

41

References

1]

J. del Cuvillo, W. Zhu, Z. Hu, and G. R. Gao. FAST: A functionally accurate simulation
toolset for the Cyclops 64 cellular architecture. Technical report, University of Delaware,
2005.

J. del Cuvillo, W. Zhu, Z. Hu, and G. R. Gao. Tiny threads: A thread virtual machine for
the Cyclops 64 cellular architecture. In Proceedings of the 19th IEEE International Parallel
and Distributed Processing Symposium. IEEE Computer Society, 2005.

J. B. Dennis. Fresh Breeze: a multiprocessor chip architecture guided by modular program-
ming principles. ACM SIGARCH Computer Architecture News, 31(1):7-15, 2003.

J. B. Dennis. The Fresh Breeze model of thread execution. In Workshop on Programming
Models for Ubiquitous Parallelism. IEEE, 2006. Published with PACT-2006.

J. B. Dennis, G. R. Gao, and X. X. Meng. Experiments with the Fresh Breeze tree-based
memory model. In International Symposium on Supercomputing, Hamburg, June 2011.

M. Frigo, C. E. Leiserson, and K. H. Randall. The implementation of the Cilk-5 multi-
threaded language. ACM SIGPLAN Notices, 33:212-223, May 1998.

